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With disturbances modeled by arbitrary solutions to a linear homogeneous

differential equation, a deterministic theory is developed for parameter esti-

mation using data over a limited time interval which has applications to sig-

nal estimation and system identification. Linear and certain classes of

nonlinear and time varying systems can be treated for identification purposes.

The approach circumvents the need to estimate unknown initial conditions

through the use of a certain projection operator.
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I. INTRODUCTION

The success in using stochastic disturbance and measurement noise models

with underlying Markov process representations is well documented for signal

estimation and system identification Ll]. Yet this does not preclude the

possibility that alternative, i.e., nonstochastic , models might be advan-

tageous in certain situations. This paper is concerned with one such potentially

useful approach in which the disturbances are modeled as arbitrary solutions

to a linear homogeneous differential equation of pre-selected order (r) over

a fixed finite time interval, 0 ~ t ~ t1 , 
and “one shot” signal estimation

or system identification is to be undertaken based on the observed data on

[O ,t1] . No assumptions are made regarding either the coefficients or the

initial conditions for this differential equation, so that a variety of dis-

turbances on (O ,t1] can be represented by a moderately low order model,

e.g., r 3 or 4 , if the observation time interval is of rather limited

duration.

Although such disturbance models have been utilized in the past in connec-

tion with canpensator design for the servomechanism problem, (2] and (3], or

more recently by Davison (4] for a “compensator identification” problem with

asymptotic tracking properties, the use of this model is quite different here .

In the first place , the time interval [O ,t1] is finite and, at least theo-

retically, may be arbitrarily short. Secondly, no restrictions are placed

on the disturbance modes , i.e., they may be stable , unstable, or a mixture

of both. Finally, no attempt is made to identify the initial conditions,

eitt er in the system model or in the disturbance model. This latter property

results from the application of an annihilating filter (introduced in [5]),

which zeroes the initial condition response of a linear system on a fixed time

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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interval EO ,t1
] . Relative to the results in [5], the present paper extends

the class of models to include certain nonlinear and time—varying systems,

allows for models in which the parameters enter nonlinearly , and includes a

signal estimation problem as an application of the basic formulation. In

addition , the parameters for the disturbance model are represented explicitly

in this paper , rather than implicitly as in the case of [5].

The theoretical development of the approach is given in Section II

starting from a basic differential operator model. Two formulations are

nresented depending on whether the model parameters are “separable” or not.

In each case the parameter estimation problem is transformed into a certain

kind of least squares fit with the pertinent functional obtained as an inner

product over a subspace of the function space to which the observed data

is assumed to belong. This subspace results from the use of the annihilating

filter and serves to obviate the need to estimate the unknown initial conditions.

It is then shown in Sections III and IV how particular identification pr~bleins

can be translated into the basic formulations developed in Section II.

Computational considerations are briefly discussed in Section V , but actual

numerical results are reported elsewhere.
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II. THEORITICAL DEVELOPMENT

It is shown in Sections III and IV how particular versions of the signal

estimation and system identification problems can be viewed as finding a

parameter vector 0 = (e
~ . .O~

) which satisfies a differential operator

equation of the generic form

P (D )v( t ) — Q(D )g(t ,0) = 0 , 0 ~ t ~ t1 (1)

where P and Q are polynomial matrices in the differential operator

d

given by

P (D) 
~~~~~~~~~ 

, Q(D) = X Q 1
D
~
”
~

and (v ( t ),g(t ,o))  are column vector functions of the given data on [O ,t13

and parameter vector e as indicated. With respect to smoothness, v( t ) and

g(t,0) are assumed to be piecewise continuous functions of t on CO ,t1
] and

are presumed not to depend on derivatives of the data; g(t,0 ) is assumed to

be continuously differentiable with respect to 0 for each fixed t .

Definition The basic model (1) is said to he separable in the parameters

if g(t ,0) admits to the representation

g(t ,0) = v (t ) f ( e )  (2 )

where V(t) is a matrix valued function of the data and f(.) is a continu-~

ously differentiable vector valued function of the parameters with the single

valued property:

f( 0) = f( e *) if and only if 0 ( )

*for all 8 and B

~~~~~~~~~~~~~~~~~~~~~~ -
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It will be shown that the computational burden is significantly less for

separable models, and that the range of f(.) is generally of higher dimen-

sion than its domain.

Although system identification will be discussed more fully in Section IV ,

the following simple example will illustrate the above notation before con-

tinuing with the development.

Exas~p1e 1 Consider the identification of parameters in the Mathieu equation

with disturbance input d(t)

y(t ) + (a ,~ - a2 cos cz3t]y(t) = ~[u (t )  + d( t)] , 0 ~ t ~ t1 
(Li )

based on the observed input-output pair [u(t ),y(t)] on the observation inter-

val (O,t1) . Assume the disturbance model

~I (t )  + wd(t )  CD + w)d(t) 0 , 0~~ t ~ t1 
(5)

where w is a parameter which is to be identified along with the other system

parameters. The disturbance d(t) can be eliminated from (4) by operating

on both sides with (D + w) . After rearranging terms the resulting differ-

ential equation can be expressed as

wy ( t )

D
3y(t) + CD

2 D 1] [a
1—a2cosa3t]y(t) — Bu (t) = 0 (6)

o {(a
1—a2

cosa3t]y(t) - ~u(t)}

which is of the form (1) with PCI)) D3 , Q(D) = -Row(D2,D,l) and

8 - (a1, a2,  
a3, 8,  w)

The model (6) is nonseparable in the parameters; however, it reduces to

the separable case if the parameter a3 
is a known constant since the g(t,Q)

vector can then be written as follows:

L ‘. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______—-
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I- wy(t )

I [a
1
-u2

cosa3t]y(t) 
- Bu(t) V(t)f(I)

[~
{(a

1
_a
2
cosa3t]Y(t) 

— 8u(t)}

Lu

a
1

y(t) 0 0 0 0 0 o l a 2
= 0 y(t) —y(t)cosa

3
t —u(t) 0 0 0 6 (7)

0 0 0 0 y(t) -y(t)cosa
3
t _u(t)J ~ia1

036

where V(t) depends on the given input-output data, the parameter vector is

now B = (a1, a2, 8,w) and fCO) satisfies the single-valued condition (3).

Given the polynomial matrix pair [P(D),Q(D)) in the basic model (1), let

a square polynomial matrix F(D) be selected in the form

F(D ) ~~F1D
Th_i 

, in ~ 
n (8)

with the integer m and coefficient matrices F~ chosen so that F 1(D )

exists and F~~(D)(P(D),Q(D)] is a causal, i.e., proper, transfer function

matrix. Then define an auxiliary error function z(t) = z(t,0) implicitly

through the solution to the differential operator equation

F(D)z(t) = P(D)v(t) — Q(D)g(t,0) , 0 ~ t ~ t1 
. (9)
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F; If (A ,C) is an observable matrix pair for the homogeneous part of (q) ,

then the solution for any particular initial condition x
0 can be written as

z(t,e )  = Ce
Atx

0 + h(t) — i(t,6) , 0 ~ t ~ t1 
(10)

where h(t) and ~(t ,O) are the zero state solutions to

F(D)h(t) P(D)v(t) (11-a)

and

F(Dhi(t,0) Q(D)g( t ,O) (li—b)

respectively. In the case where the basic model (1) is separable in the

parameters, the vector ii(t,0) can be written as

i~(t,0) = M(t)f(0) (12)

where M(t) is the zero state solution to the matrix differential equation

F ( D ) M ( t ) = Q(D)V( t ) . (13)

Given the polynomial matrix ND) and a corresponding observable matrix pair

(A ,C) for the homogeneous part of the auxiliary error equation (9), the anni-

hilation filter relative to a fixed observation time interval [O,t1
] is

defined by the (noncausal ) kernel function matrix

~~‘: H(t,t) = 16(t-t) - CeAt W~~e
A T C~ (14-a )

0~~~t~~~t1 
,

where 6( t ) is the Dirac delta function , I is the identity matrix , is

That is, all solutions to F(D)z(t) = 0 can be expressed by

z(t) Cx(t) = CeAt
x , ~(t) = AxCt), x (o)  = x

0t~~
’~~, for an appropriate observable

matrix pair (A ,C) with minimal dimension state space (ii ) , and where eAt is
the state transition matrix for A.

L - 
_ _ _ _ _ _ _ _ _ _ _  -- - -~~~~~~~~~~~ . - - -
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1

inverse of the obser~vabi1ity Gramian for the pair (A ,C) def ined by

ft
V = J e C ’Ce” dt , (14—b )

0

and prime denotes transpose. If denotes the Hu bert space of all vector

valued square integrable functions z(t) which are possible solutions to (9)

on [0,t
1
) , and 0 the linear subspace spanned by the columns of CeAt 

,
t

then it is easy to show that ~~~~
‘ is a projection operator on ~~~~. with range

contained in ( . ? ~
) which possesses the annihilation property

~~ (Ce~tx0 ) = 0 , 0 ~ t ~ t1 , for all x c S~’
5 

. (15)

This property follows immediately from the definition of ~~ in (1Le). The

fact that s~
’ is a projection follows upon noting that 

~~
‘(
~
)

Operating on both sides of (10) with .~~~~
‘ yields

z(t,0) h(t) — p (t,O) , 0 < t < t
1 (16)

where

h (t )  h (t )  _ C eAt W 1J:
A ’ t Ct h ( T )d T (17-a )

and
tl

;(t ,0) = u(t,0) — ce
At~

_l 
eA ’ TC~ p ( t ,O)d r (17—b)

0

~Thus , ‘
~~~~~~ (z(t) = ceAt x0 , 0 ~ t ~ t1 : x cj~’~}

- 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ —-  - 
-
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are the projections of h(•) and p (’,O) down into the subspace (~ - ~~~).

Defining the inner product functional J1(e) by

— — 
t
l_ -

J1
(0) = <z(e), z ( O )  > J z ’(t,9)z(t ,8)dt (18)

it follows from the above development that any value of 0 which satisfies the

basic differential operator model (1) is also a solution to the nonlinear trans-

cendental equation

J
1
(0) = 0 . (19)

Conversely, any value of 0 which satisfies (19) is a cand idate for a value of

the parameter vector 0 satisfying (1).

A straightforward calculation of the quantities involved
tshows that J1( O )

can be represented by

ti 
tl

= JO h ’(t)h(t)dt - ~ ‘W~~1i - 2J h’(t)~ (t ,0)dt

(20 )
f t1

+ 2fl ’W
1
v(0) + J p ’(t,O )~ (t,8)dt — v ’(e) W 1V(0)

0

where h(t) and p(t,O) are given by (11) and the vectors (n,v(e) ) are

defined by
t

J ‘eA ’t
C th(t)dt (21-a )

0

v(O ) = 
J0

eA t C~~ t,0~~t . (21—b )

Specifically, substituting (16) and (17) into (18), and simplif ying the resulting
expression.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~ - - -  ___________
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An iterative solution to (19) can then be attempted via any suitable parameter

search method , with the gradient VJ1(e) and any higher order derivatives of

J1
(0) computable by causal relations involving the input-output data on [o,t1],

relative to any particular value of B . Equation (11-b) must be integrated

anew ( from the zero state) for each value of 0 in the course of constructing

a sequence {0(n)} as a possible solution to (19). More generally, the limit

of a minim izing sequence for J1(0) represents a kind of least squares

estimate of the parameter vector 0 which may, or may not, be unique depending

on the nature of the model (1) and the observed data on tO ,t1
)

In the case of a model which is separable in the parameters, ~(t,8
) is

given by (12) and v(0) in (21-b) can be written as

v(e) = Nf (0) (22)

where the matrix N is defined by

A’t
N = J e C’M (t)dt . 23)

0

In this case, the function J
1
(8) reduces to the following explicitly define~

function of 0

j
2( 8)  = a — 2C ’f(0) + f’(O)Of(O) (24)

where (a ,C ,$) are defined by

r
tl -l

a = J h’(t)h(t)dt — ri ’W n (25—a )
0

C J M’(t)h(t)dt — N’W~~r) (25—b)
0

t
l

$ J M ’(t )M ( t )dt - N’W 1N .
~~~ (25-c )

0

~Ihe matrix 
$ is actually the Gram matrix for the column vector functions of

M (t )  ~ ‘(M) ; as such, $ is necessarily symmetric and non-negative definite
regd -Uless of the data on [o,t1)

______________________________________

~
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Although J1
(0) and J

2
( 0 ) are equivalent positive definite functionals

of 8 whose zero values reflect possible values for the unknown parameter

- 
. vector 0 satisfying the basic model (1) , the computational advantages of

(24) for the separable-in-the-parameters case should be evident inasmuch as

J2(0) is an explicitly defined function of B , while J1(0) is defined only

implicitly. This means that once the differential equations (11—a) and (13)

are integrated (from the zero state) and the quantities (~~,N,a ,C ,$) computed

from (21—a), (23) and (25), there are no further integraci~ns needed involving

the data collected on [o ,t1] 
. Moreover , sufficient  conditions for the

uniqueness of solutions to the parameter estimation problem can be stated more

specifically as follows.

Assertion In the case of the basic model (1) and (2) which is separable in

*the parameters, a minimizing value 0 for the positive definite function

J2
(8) in (24) is a least squares estimate of the parameter vector 8 which is

unique if (as a sufficient cond ition ) the given data is such that the columns

of Q(D)V(t) are linearly independent functions on 0 ~ t ~ t1

The fact that a m inim izing value B for J2(0) is a least squares esti-

mate folløws from the consideration that if J2
( X )  , A f ( 0 )  is minimized

over A , rather than 0 , the necessary condition , VJ2( A )  = 0 , is seen to be

• 4v32
(A = C — OX = 0

which in turn can he seen to be t~.e normal equations for the projected auxiliary

error function z( t,0) h(t) — M(t)f(0) h(t) - M(t)k in (16). Since

(t l . _ , — —

• = M (t)M(t)dt is the Gram matrix for the column vector functions of M( ),
J o

-

• 
a unique solution to these normal equations is obtained if and only if the

columns of M(’) are linearly independent on to,t11 . 
Now the columns of M(t)

-

~

‘:

~

:

~ 

‘
~~~~ 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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are wholly contained in the subspace (p.- ~~ ) and can be represented by

(r~~(D)Q(D)v(t)A)
1 

where the symbol ( ) L 
denotes the orthogonal complement ,

or projection, of the function F 1 (D)Q(D)V(t)X in the subspace (~~ - ~~~)

Since is the null space for F(D) , it follows that linear dependence, or

independence , of the columns of f4(.) cannot be destroyed, or altered , by

operating on (F~~(D)Q(D)V(t)X)~ with r(D) . By this argument , the sufficiency

proof for uniqueness in the Assertion is established . This condition is also

necessary when the function f(0) is just B since J2
(0)  is then a positive

definite quadratic form in 0 . This will be the case for the signal estima-

tion problem in Section III, as well as any problem for which the unknown param-

- 

- eters enter linearly in the basic model (1) - (2).

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~
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III. Signal Estimation

Let an observed scalar signal y(t) on F 0,t1
] be represented by

y (t )  = s(t )  + d( t ) (26)

where the useful signal 8(t) and the disturbance d(t) are assumed to be

modeled by the differential operator equations

s(t): A(D)s (t) = B(D)u(t) (27-a)

d(t): T(D,e)a(t) =~~~01
D
r_id(~ ) = 0. (27-b)

0 10

In the model (27-a ) for the signal s(t) which is to be estimated , the differ-

ential operator polynominals (A ( D ) , B(D)) and the deterministic signal u(t),

0 ~ t ~ t1, are assumed to be given , but the initial conditions are unknown . The

order (r) of the disturbance model (27-b) is assumed to be specified , but the co-

efficients B (B l• • B r
) and initial conditions are unknown.

Operat ing on both sides of (26) with T(D,8) A ( D ) ,  noting (27), and rearrang-

ing terms leads to the differential operator equation

0 = Dr[B(D)U ( ~~) — A (D )y ( t ) ]  - [D1
~~~...D 1][A(D)y(t) - B (D)u (t ) ]  : (2 8)

0
r

which is of the form (1) and (2), i.e., separable in the parameters, with the

parameter vector B Col( 0
1
•..0 ) entering linearly . Pt 1ei~t squares estimate

of B is obtained either by minimizing the quadratic fin~ctional J2
(8) with

f(0) 0 in (24), or by solving the “normal” equations

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . :-~ T~T 
•
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C = $0 (29)

directly, where c and 0 are given in (25) after first integrating the differ-

ential equations (11-a) and (13) for this problem , i.e., obtaining the zero

state solutions to

r(D)h(t) = D
rB(n)u(t) - DrA(D)Y(t) (30-a)

and
F(D)M(t) = t D

r_ l....D 1JUA(D)y(t) — B(D)u(tYI. (30-b )

Here h(t) is a scalar while M(t) is a row vector (M
1
(t)•-.M (t)).

Let 8 denote the resulting least squares estimate and define an annihi-

lation filter~~’8 by its impulse response funct ion H8(t,T) analogous to (14):

A t  A ’ r
He(t~

•r) sS(t—r )—C
8
e ~ W~~e ~ C~ , 0 ~ t ,i ~ t1 

(31)

where (A0,C0
) is an observable pair for the disturbance model (27-b ) with

0 0, e.g.

0 1 0

A8 = 

‘6r 

, C
8 Row(l,0~~0). (32)

The signal estimate is then defined by

s(t) =~~~(y(t)) 0 ~ t ~

(33)
A t  t A ’t

= y(t)-C0e ~ w~ J~ e ~ C~y(r)d r

which is the projection of the observed data y(t) down into the subspace oh-

tam ed by deleting all linear combinations of the disturbance ~odes identified
I

1
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via the solution to the normal equations (29). Using the function space norm,

the error in this estimate can be f ound to have the following representation:

- 2
JJ s - sH = d W ed

where
t A ’t

d ç
l J i e B C~s(t)dt.

It is clear that the estimate (t) is precisely the signal s( t ) under the

conditions: (i) the models in (27) are correct, (ii) det $ ~ 0, and (iii) s(-.) is

orthogonal to each of the basis functions comprising dt~~) ,  i.e. ci = 0.

Example 2: Fourier Series Model for s(t)

Given the time interval [0,t1], define a fundamental frequency u0 by

2w
w
0 t

1

and select the polynomials (A(D) ,B(D)) in (27-a) according to

A ( D )

B(D) 0.

Then the solution to the signal model (27-a) is the truncated Fourier series

in j nw t
s(t) =

j_m
S
n
e ~ , 0~~~t~~~t1.

4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~
—
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IV. System Identification

A number of examples will be given in this section to illustrate the

basic theory for system parameter identification .

Example 3: Linear Differential Systems

Let the input-output relation for a class of linear systems be charac-

terized in the absence of input or measurement disturbances by the differen-

tial operator equation

A(D,c~i)y(t) = B(D ,~~)u( t )  (34)

where A(D ,w)  
~~ 

Ai
(w)D’

~~ 
, B(D ,u) = 

~L 
B1
(W)D

n_i
.

The coefficient matrices (A.(u~) ,B.(w)),0 ~ I ~ n , are assumed to be given func-

tions of a parameter vector w (w
1
..w

~). Define a vector valued function f(w)

with components f1
(w) selected so as to reflect all the various distinct ways

in which the parameters enter into the A
1

(w) and B
1
(os), i.e. linear , multipli-

catively, etc. It is then easy to see how to define quantities {P(D),Q(T)),

v(t),V(t)} with v(t) and V(t) depending on the input-output pair Fu(t),y(t)]

such that the following decomposition holds:

A(D,w)y(t) — B(D ,w)u(t) = P(D)v(t) - Q(D)V(t )f (w ) (35)

= 0 .

Now suppose the input and output are corrupted by additive disturbances such

that the observed output y(t) includes a measurement disturbance d1(t) accord-

I ing to

• y(t)=y(t)+d(t)

and the actual input to the system is the signal

I u0(t ) = u(t) + d2
(t )

_,j, 
~~~~ _ _ ~ZT ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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while only u(t) can be directly observed. Including these disturbances in (34)

implies:

A(D,w)[y(t) — d1(t)) = B (D ,ti )tu( t )  + d2(t)]. (36)

If d
1
(t )  and d2(t) are assumed to be arbitrary solutions to differential equa-

tions of the form (27.-b) on the observation interval [o ,t1], it makes no

difference whether all such disturbance modes are present in the input, that

• they corrupt only the output, or some combination thereof, since operating on

both sides of (36) with T(D ,e) yields

T(D,0)A(D,u )y(t) = T(D ,8)B(D,w)u(t). (37)

With the decomposition (35) already defined for the system without disturbances ,

the analogous decomposition for the model (37) with disturbances modele d by

(27-b ) can be easily shown to be as follows : 01 :1

0 = DDP (D)v(t )

--s---
_rD

r_l
p D v t . . pD v t !D rQ D v t :o

T_l
Q D v t )..QDvt~~ f(w)  (38)

0
1
f (w )

e~~(w)

This differential operator equation is in the form of the separable-in-

the-parameters model (1) and (2) with parameter vector 0 = (0i
•0

riwi~~
w
p)•

The vector function f(e) on the right side of (38) satisfies the single-valued

property (3) if the original function f(w) in (35) satisfies this property.

This will normally be the case for a properly parametrized model.

It is apparent from (37) that the disturbances can be equivalently inter-

preted as uncontrollable m odes. In contrast with the formulation In t51 , the

parameters (e1•• e )  for these modes are modeled explicitly here , rather than

Li ___  _ __________— _______
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implicitly. This avoids the polynomial factorization discussed in 15] when

the disturbances are modeled implicitly.

As specific illustration of this notation consider the following state

equations for a helicopter in longitudinal motion as given by Narendra and

Trlpathi [6]: 
~ ba11 a12 a13 alk 11 12

a21 a22 a23 a24 

~~ 
b22

*(t) = x(t) + u(t)

~3l ~ a33 
b31 

b32

0 0 1 0 _ 0 0

• 1 1  0 0
y(t) =1 I x(t )

L°  ~ o 1J

According to Narendra and Tripathi the (b
21,a32,

a34) entries (designated by

(w1,w2,w3) above) vary significantly over the airspeed range 60-170 knots,

while the remaining entries maintain relatively constant values. In addition ,

the vertical velocity (x
2) is difficult to measure, and the pitch rate (x

3
)

might entail high frequency measurement noise. Hence, horizon tal velocity (x
1
)

and the pitch angle (x
4

) are regarded here as the measurable outputs, together

with the measurable collective (u
1
) aM longitudinal cyclic (u2

) pi tch control

input variables , and u (b 21,a32,a34) is regarded as the parameter vector for

identification. Eliminating the states (x2,x3) in order to obtain an input-

output relation of the form (34), and rearranging this equation into the requi-

site form (35), the quantities (P ,O,v,V ,f) are found to be as follows:

3 2 10 10 0 1
• P(D)= PD + P D  + P D + P  , P = I  Io 1 2 3 o L o o o o J

(‘3

ID i ol 1-y(t) 1

Q(D) I I v(t) = I f(w)
[o 0 lJ L u (t )

~1~2

-~~~~~ -- 
- ~~-— -

~
--

~~~~~~~~~ .-~~~~
-
~~~

- - -- - - - -
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r o —a23y2(t) -y2
(t) o 

1

V(t)  = 0 y3(t) a22y2(t) 
..u
1(tl

~~ 12u1(t ) 0 •. 0 0 
]

y3(t) ~ -821y1(t) - a2~y2 (t )  - b22u2(t)

The (P1,P2,P3) matrices depend on the fixed (a11,b1.) values.

Example 4: Time Lag Systems

Let the model (34) in Example 3 be modified to include an unknown pure

time delay a:

A (D ,ui)y(t ) = B(D ,w) u (t - a ) , a ~ amax !
~ (39 )

It is clear that a decomposition such as ( 35 ) will not exist in this instance

so that the time-delay system is not separable in the delay parameter. How-

ever, input-output disturbances similar to those included in (36) can still

be incorporated leading to (37) with u(t) replaced by u(t-a). The basic model

(1) will then apply in this case for appropriately defined quantities {P,Q,v,g)

with the parameter vector 0 comprised of (0,w,a).

As a specific illustration of the notation involved , consider a single

input-single output system with

A ( D ,w) = 02+w1D+w2 , B(D ,w)

T(D ,0) = D+0

The input-output relation (39) with disturbances is then

(D2+w10-i-u2)[y(t)—d1
(t)] = w3[u(t-a)+d2(t-a)].

Using a first order disturbance model for both d1
(t )  and d2(t), the above is

equivalent to the following differential delay operator equation (obtained

after some rearrangement):

~Altbough a is unknown, its value is assumed to be bounded by a 
given number

a as indicat ed.
• max

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - __________  4



~ -- -- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~

-19-

(w1+0 )y(t)
D3y(t) + ID

2 Z) ii (w2+w18)y(t) 
- ~3u(t—a) = 0 (40)

w2Oy(t) - w3Ou(t—a )

which is of the farm (1) with parameter vector 0 (0,w1,w2,w3,a).

Even though the “state” of the models (39) and (‘sO) is infinite dimen-

sional, the basic theory of Section II leading to the functional J1
(e) in (20)

is still valid. However, the given data must be assumed to include the past

input u(t) for tcf_umsx~0) in addition to the input-output pair [u(t),y(t)] on

[0,t
1
]. This will ensure the existence of a solution to (19) for computational

considerations.

Example 5: Hammerstein Model

Consider the scalar system with observed input-output pair [u(t) ,y( t)]

on f0,t1
]:

A (D ,w)Iy(t) + d
1
(t)1 = B(D,w) fZa i

(u (t ) ) t 
+ d2
(t)) (41)

where d
1

(t ) and d2(t )  are unknown disturbances. This is a Hammerstein model

(P 7) with output disturbance d1(t) arid intermediate input disturbance d2
(t)

entering the system after the zero memory nonlinearity characterized by the

parameters a = (a
1
..a

~
). Assuming the disturbance model (27-h) for d

1
(t ) and

the model (41) is modified to

k .
T(D ,0)A(D ,w)y (t )  = T(D ,8)B(D ,w) ~ cz.(u(t))~. (‘s2)

It is evident that with appropriate definitions of the quantities (P,Q,v ,V ,f)1

(42) can be arranged in the form of the separable-in-parameters model (1)

and (2) with parameter vector 8 (8,w,a), given any particular (A(D ,w),B(D,w))

polynonials and integer r in (27-b).

~~—‘—-- —~~-- ~~~~~~ - - - -~~~~~~~~~~~ -~~~ ‘~~ -- ~~~~ r. — 
— _____________________ — — —_ -  ____________
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Example 6: Peak Output System

Consider a scalar system characterized by the model

A (D,w)[c(t)+d1(t)] B(D,w)fu(t)+d2(t)) (43-a )

y(t) = a — (c( t )) 2 ~
• 

(43—i )

where d1(t) and d2(t) are again disturbances of the type modeled in (27-h), c(t)

is an intermediate output signal preceding a parabolic nonlinearity with unknown

peak value a, and iu(t),y(t)) is the observed input-output pair on f O,t1]. Incor-

porating the disturbance model (27-s) into (43-a) and replacing c( t ) by

±T(D,0)A(D,w)[a—y(t)]1”2 = T (D ,8)B (D ,w)u(t). (44)

Given polynomials (A(D,w),B(D,w)) and an integer r for the disturbance model

(27—b), it is clear that ( 1 ’s)  can be arranged into the form of the nonseparable

basic model (1) with parameter vector 8 = (8,w ,cz). For example, taking the

second order system with first order disturbances:

A (D ,w) D2+~1D+w2, B(D,w) = w~, T(D,8) = D+0, the rearrangement of (44) in this

case leads to

0 = [D3 D2 D 1] ±(0+w1)[a—y(t)]~
’2 (45)

±(ew
1
+w2

)[a_y(t))hI
F2 

- w
3
u( t)

± 0w
2
[a-y(t))1’~

2 
— e~3u(t )

Here, the term P(D)v(t) in (1) is absent so that the inner product terms in-

volving h(t) and ,~ in (20) are zero, leaving

tNotice that a shift in the parabola according to y a-(c-c~)
2 is unnecessary

since the disturbance model for d1
(t )  includes c~ as a special case.

- — -
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J1(e) = J l  tu (t,O) ) 2dt - v ’(9)W~~v(8) = 0 (46)

where 0 = (B,w1,w2,tu3,a). The ambiguity in sign for the term ±(a-y)
1”2 in (44 ) -

and (45 ) cannot be resolved and may cause nonuniqueness in finding the zeros of

(46) even if the input is sufficiently active to excite all the modes in the -

system on f 0,t1
]. In any case, the initial guess for the peak output should -

be chosen to satisfy

a( 1) > Max y(t)
o~~~t~~~tl

in the construction of any sequence fO(n)}, n = 1,2.•, directed at solving (46).

~

• I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •
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V. Computational Considerations

Assuming the basic model (1) has been obtained for any r articular appli-

cation , it is necessary to choose the polynomial matrix F(D) in (8) of suffi-

ciently high order so that (li-a) and (11-b), or (13), can ~e integrated

without involving derivatives of the data on the right hand side of these

equations . Apart from det F(D) � 0, the selection of F(D) is quite unrestricted

and the modes of F(D) can be selected as either stable or unstable since all

computations are confined to the finite interval Eo , t1]. In this selection it

is possible to take advantage of cancelling various modes in P(D) and Q (D),

i.e. cancellation of poles and zeros in F 1( D ) [ P ( D ) ,  Q (D ) ] ,  in order to simplify

the computations for h(t), p (t ,8) or M(t). However , it is necessary to include

any such cancelled modes in the computation of fle
At for the determination of W

in (l’th ) and in the computation of (~~,~ (O) or ~) in (21) and (23). In this

connection it should be evident that ~e
At 

and can he computed off line and

stored for subsequent online computations as input-outnut data is r resented .

Various simpl~fications in integrating the recuired differential equations

can be gleened by a careful comparison of the equations involved . For exanpie ,

comparing (30a) and (30b) which are needed to obtain the normal equations (29)

in the signal estimation problem , it is evident that the components of ~(t) can

be obtained by pure integrations of h(t), viz.

t t
M
1
(t) = — J h(t)dt , M.(t) J M . 

1
(t)di , 0 c t < t

1 
( 47)

i = 2 . . r

Similar simplifications in computing the columns of M (t) will be evident for

• the integrations .irisiug from the basic model (38)  ir~ Example 3, a~ well as in

the other examples. 

~~~~~~~
- - --
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Concerning the choice in the order (r) of the disturbance model (27-b),

it could be argued that such ~ choice can neVer ~e made w i t h  - &rv degree of

certainty since disturbances are, by nature, unknown . Two commer ts are ap-

propriate in this connection : (1) The minimization of either J
1

( O )  in (20),

or J
2
(0) in (24), represents a kind of generalized least squares estimate of

the parameter vector 0 appearing in the basic model (1) or (l)— (2), since

(20) and (24) stem from the Hilbert space norm of the projected error func-

tion (t ,o) in (16). (ii) If the minimal value of tJ1
(0) or J

2
(0) exceeds a

certain small value ~ indicating inadequacy of the model, a natural course of

action is to change the value of r and recompute the new functional. If

J(8;r) denotes the functional corresponding to i certain value of r in (27-b),

a reasonable procedure to follow might be to start with a largc value of r.

say r , compute the necessary quantities for r = r , then note that themax max

analogous quantities for r < rmax 
can be obtained by pure integrations of the

former in many cases. To illustrate this point , consider the quantities h(t)

h(t;r) and M(t) M(t;r) in (30-a) and (30-h) for the signal estimation ~roL-ier~.

Assuming F(D) is chose:i so that h (t;rm ax ) and M (t;r~~~
) are causally related

to the given data, and assuming the same F(D) for r < r
m , it is seen that

h(t;r) Dr’~~ aax h(t;r )max

which is an (r - r) fold integral of h(t;r ) .  Tb~~ consideration coupled
max max

with the observations in (47) can significantly reduce the number of integra-

tions when consi rir:g various orders for the disturbances model (27-b).

• As a final remark concerning the minimization of J2
(8) in (24) for models

which are separable in the parameters , a choice basically exists between i~ini-

mizing over A f(0). or minimizing directly over 0, in view of the single

valued property (3). The advantage of the former is that is quadratic in

t 

~ . T  ~ ~~~~~~~~~~~~~~~ ~~~~~~ -~ -~~-~~~~- 
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A while it is generally highly nonlinear in 0. However , this advantage is

offset by the fact that the dimension of A may be very much greater than 0

• 
• as can be seen from the various separable examples presented in the preced-

ing sections.

I
~~~~~~~~~~~ •. 
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VI. Concluding Remarks

The formulations of the signal estimation and system identification

problems presented in this paper use models for the disturbances which are

deterministic homogeneous linear differential equations of preselected or-

der (r) on a finite time interval [0,t1
]. The shorter the time interval, the

more realistic will be the assumpt ion that the disturbances can be so modeled .

On the other hand , the time interval must be long enough so that the data con-

tains enough information to reflect the values of the parameters to he deter-

mined in the basic model. This can be put into somewhat more specific terms

by referring to particular examples, viz, the matrix $ in the normal equa-

tions (29) for the signal estimation problem must be sufficiently positive

definite to yield a unique solution . A larger t1 
enhances this possibility

since ~ is a Gram matrix for functions in the space (‘p - ‘~~ ).

The examples for illustrating the basic n d c l (1) are surely not eXfl3uh -

tive . The Fourier series model in Example 2 i~ a natural model for the sic-r ~l

estimation problem ; yet there may exist applications for using the more general

model of (27-a). The nonlinear examples for system identification referred to

tandem interconnections of zero memory nonlinearities and linear dynamic sub-

~~stems. However , other identification problems can he handled such as the

Duffing equation with input disturbance d(t):

• 
~ (t )  t w

1
y ( t) .r ( t )  + u2

y(t) + u
3y
3(t) u4f.u (t) 

+ d(t)].

In differential operator notation , this can be written as

D
2y(t) + 1/2 w

1
D(y2(t)) + w

2
y(t) + u3y

3(t) u4
{u(t)+d(t))

having noted that v~ = l/2D(v
2). Employing the c~isturhance model (27-h) •n:d

proceeding as in the previously cited examples will ie.rd to a model which

• separable in the parameters . The Van der Pol equation can be ~ir ilarly handled .

I t~
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Finally , although most of these examples have involved time invuriar.t systems ,

it should be clear from Example 1 that certain time varying systems can be

placed in the form of (1).

No examples involving numerical calculations have been given in this

paper. However, a number of computer simulations have been carried out for

linear system identification , both fixed and time varying . gorre of these are

reported in Section V of [5], while others are contained in a recent thesis b”

Chin [8]. The results of the latter, which includes an aerospace adaptive con-

trol application with time varying parameters, will be reported elsewhere .

- -~~~•~~~~~~~~~~~~~~~
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